PHPFixing
  • Privacy Policy
  • TOS
  • Ask Question
  • Contact Us
  • Home
  • PHP
  • Programming
  • SQL Injection
  • Web3.0

Tuesday, May 10, 2022

[FIXED] Why is B = numpy.dot(A,x) so much slower looping through doing B[i,:,:] = numpy.dot(A[i,:,:],x) )?

 May 10, 2022     multidimensional-array, numpy, product, python     No comments   

Issue

I'm getting some efficiency test results that I can't explain.

I want to assemble a matrix B whose i-th entries B[i,:,:] = A[i,:,:].dot(x), where each A[i,:,:] is a 2D matrix, and so is x.

I can do this three ways, to test performance I make random (numpy.random.randn) matrices A = (10,1000,1000), x = (1000,1200). I get the following time results:

(1) single multidimensional dot product

B = A.dot(x)

total time: 102.361 s

(2) looping through i and performing 2D dot products

   # initialize B = np.zeros([dim1, dim2, dim3])
   for i in range(A.shape[0]):
       B[i,:,:] = A[i,:,:].dot(x)

total time: 0.826 s

(3) numpy.einsum

B3 = np.einsum("ijk, kl -> ijl", A, x)

total time: 8.289 s

So, option (2) is the fastest by far. But, considering just (1) and (2), I don't see the big difference between them. How can looping through and doing 2D dot products be ~ 124 times faster? They both use numpy.dot. Any insights?

I include the code used for the above results just below:

import numpy as np
import numpy.random as npr
import time

dim1, dim2, dim3 = 10, 1000, 1200
A = npr.randn(dim1, dim2, dim2)
x = npr.randn(dim2, dim3)

# consider three ways of assembling the same matrix B: B1, B2, B3

t = time.time()
B1 = np.dot(A,x)
td1 = time.time() - t
print "a single dot product of A [shape = (%d, %d, %d)] with x [shape = (%d, %d)] completes in %.3f s" \
  % (A.shape[0], A.shape[1], A.shape[2], x.shape[0], x.shape[1], td1)


B2 = np.zeros([A.shape[0], x.shape[0], x.shape[1]])
t = time.time()
for i in range(A.shape[0]):
    B2[i,:,:] = np.dot(A[i,:,:], x)
td2 = time.time() - t
print "taking %d dot products of 2D dot products A[i,:,:] [shape = (%d, %d)] with x [shape = (%d, %d)] completes in %.3f s" \
  % (A.shape[0], A.shape[1], A.shape[2], x.shape[0], x.shape[1], td2)

t = time.time()
B3 = np.einsum("ijk, kl -> ijl", A, x)
td3 = time.time() - t
print "using np.einsum, it completes in %.3f s" % td3

Solution

With smaller dims 10,100,200, I get a similar ranking

In [355]: %%timeit
   .....: B=np.zeros((N,M,L))
   .....: for i in range(N):
              B[i,:,:]=np.dot(A[i,:,:],x)
   .....: 
10 loops, best of 3: 22.5 ms per loop
In [356]: timeit np.dot(A,x)
10 loops, best of 3: 44.2 ms per loop
In [357]: timeit np.einsum('ijk,km->ijm',A,x)
10 loops, best of 3: 29 ms per loop

In [367]: timeit np.dot(A.reshape(-1,M),x).reshape(N,M,L)
10 loops, best of 3: 22.1 ms per loop

In [375]: timeit np.tensordot(A,x,(2,0))
10 loops, best of 3: 22.2 ms per loop

the itererative is faster, though not by as much as in your case.

This is probably true as long as that iterating dimension is small compared to the other ones. In that case the overhead of iteration (function calls etc) is small compared to the calculation time. And doing all the values at once uses more memory.

I tried a dot variation where I reshaped A into 2d, thinking that dot does that kind of reshaping internally. I'm surprised that it is actually fastest. tensordot is probably doing the same reshaping (that code if Python readable).


einsum sets up a 'sum of products' iteration involving 4 variables, the i,j,k,m - that is dim1*dim2*dim2*dim3 steps with the C level nditer. So the more indices you have the larger the iteration space.



Answered By - hpaulj
Answer Checked By - Katrina (PHPFixing Volunteer)
  • Share This:  
  •  Facebook
  •  Twitter
  •  Stumble
  •  Digg
Newer Post Older Post Home

0 Comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Total Pageviews

Featured Post

Why Learn PHP Programming

Why Learn PHP Programming A widely-used open source scripting language PHP is one of the most popular programming languages in the world. It...

Subscribe To

Posts
Atom
Posts
Comments
Atom
Comments

Copyright © PHPFixing