PHPFixing
  • Privacy Policy
  • TOS
  • Ask Question
  • Contact Us
  • Home
  • PHP
  • Programming
  • SQL Injection
  • Web3.0

Friday, July 29, 2022

[FIXED] How does PIL Image save NumPy arrays with non-integer and non-positive values?

 July 29, 2022     image, numpy, python, python-imaging-library     No comments   

Issue

I have a NumPy array of size 28 x 280, which contains real number values (both positive and negative values). I am using the following code to save this array to file through a PIL Image -

img = Image.fromarray(img)
img.save(save_path, "PNG")

Now, when I load this saved image using PIL using the following code -

img = Image.open(save_path)
img = np.array(img)
print(img[:,:,0]) # since the image is saved in RGB by default, and the channels are simply all the same, I am printing out only one of the channels
print(img.shape) # printing shape of loaded image for sanity check

The above gives me the following output -

array([[ 0,  0,  0],
       [ 0,  0,  0],
       [ 0,  0,  0],
       [14, 14, 14],
       [ 0,  0,  0],
       [14, 14, 14],
       [ 0,  0,  0],
       [ 2,  2,  2],
       [10, 10, 10],
       [ 0,  0,  0],
       [ 0,  0,  0],
       [ 0,  0,  0],
       [ 6,  6,  6],
       [ 0,  0,  0],
       [19, 19, 19],
       [16, 16, 16],
       [ 0,  0,  0],
       [ 9,  9,  9],
       [14, 14, 14],
       [ 5,  5,  5],
-- omitting the remaining matrix for spatial reasons

The original matrix looks something like the following if that helps -

   1.54009545e+00  1.14122391e-01 -5.44282794e-01 -1.66106954e-01]
 [-2.70073628e+00 -6.25280142e+00  1.77814519e+00 -8.72797012e+00
   9.91206944e-01  6.63580036e+00  6.84081888e+00 -1.18705761e+00
  -4.54479456e+00 -5.26672935e+00  4.91975927e+00 -5.48409176e+00
  -3.93164325e+00  5.19110155e+00  1.26516495e+01  9.93665600e+00
  -5.70824432e+00  5.72582603e-01 -4.31831169e+00 -9.31297874e+00
   2.13714447e-02 -9.82507896e+00 -2.47176766e+00 -1.94778728e+00
  -1.85507727e+00 -8.01630592e+00 -4.42644596e+00  5.74180269e+00]
 [ 3.32923412e+00  1.50732050e+01 -1.01800518e+01  1.85193479e-01
  -1.77801073e+00 -4.91134501e+00 -4.94232035e+00  5.52533197e+00
  -3.84771490e+00 -5.61370182e+00 -2.91945863e+00 -9.53506768e-01
   7.03971624e-01  1.26758552e+00 -1.29794350e+01 -1.08105397e+00
  -5.57984650e-01 -1.50801647e+00 -3.45247960e+00 -6.14299655e-01
  -4.83907032e+00  5.44770575e+00  2.50088573e+00 -2.45785332e+00
  -3.94766003e-01  7.80810177e-01 -1.66951954e+00 -5.23118067e+00]
 [ 1.24226892e+00 -4.30912447e+00  1.14384556e+00 -5.38896322e+00
  -5.95073175e+00  5.03882837e+00  4.15563917e+00 -7.99412632e+00
  -1.68129158e+00 -2.23124218e+00  2.24080634e+00 -5.57195246e-01
  -2.29391623e+00 -2.70431495e+00  9.87635612e+00 -2.90223390e-01
   3.25407982e+00  3.67051101e+00 -2.86848998e+00 -4.53229618e+00
  -3.80941963e+00  3.66697168e+00  3.98574305e+00 -1.50027335e-01
  -8.77485275e+00  2.20300531e+00  4.97666216e+00  2.27730870e+00]]

-- again, omitting large chunks for spatial reasons

Question -

  1. Here, from what I understand, PIL is implicitly converting the reals to uint8 format (0 to 255 pixel values), but I want to know how exactly conversion of reals to uint8 takes place? Are the real pixel values rounded off or truncated to the closest integer, if so, what happens to the negative pixel values?
  2. Also, when I try to visualize the PIL image by simply opening it, it just shows me a black screen, like so - enter image description here

But, the weird thing is that, when I multiply the np array by 255, like so - img = img * 255, and then save it, it shows some values, like so -

enter image description here

Is it just that the pixel values initially are too light to be perceived by my eyes? I think so, but I just want to confirm.


Solution

If you want to save negative and floating point data as an image, you should probably use TIFF format.

PNG is only able to store unsigned integer data at up to 16-bit/channel, i.e. in range 0..65535.


Here is a demonstration of saving positive and negative floating point numbers in a TIFF and then retrieving them:

import numpy as np
from PIL import Image

# Set height and width
h, w = 5, 4

# Create image from Numpy array of float32 and save as TIFF
naA = np.linspace(-1000, 1000, h*w, dtype=np.float32).reshape((h,w))
Image.fromarray(naA).save('floats.tif')

# Read back image and compare
imB = Image.open('floats.tif')
naB = np.array(imB)

Now print both and check same:

In [101]: naA
Out[101]: 
array([[-1000.     ,  -894.7368 ,  -789.4737 ,  -684.2105 ],
       [ -578.9474 ,  -473.6842 ,  -368.42105,  -263.1579 ],
       [ -157.89473,   -52.63158,    52.63158,   157.89473],
       [  263.1579 ,   368.42105,   473.6842 ,   578.9474 ],
       [  684.2105 ,   789.4737 ,   894.7368 ,  1000.     ]],
      dtype=float32)

In [102]: naB
Out[102]: 
array([[-1000.     ,  -894.7368 ,  -789.4737 ,  -684.2105 ],
       [ -578.9474 ,  -473.6842 ,  -368.42105,  -263.1579 ],
       [ -157.89473,   -52.63158,    52.63158,   157.89473],
       [  263.1579 ,   368.42105,   473.6842 ,   578.9474 ],
       [  684.2105 ,   789.4737 ,   894.7368 ,  1000.     ]],
      dtype=float32)


Answered By - Mark Setchell
Answer Checked By - Timothy Miller (PHPFixing Admin)
  • Share This:  
  •  Facebook
  •  Twitter
  •  Stumble
  •  Digg
Newer Post Older Post Home

0 Comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Total Pageviews

Featured Post

Why Learn PHP Programming

Why Learn PHP Programming A widely-used open source scripting language PHP is one of the most popular programming languages in the world. It...

Subscribe To

Posts
Atom
Posts
Comments
Atom
Comments

Copyright © PHPFixing