Issue
I am reading a file from FTP server into spark rdd like this
val rdd = spark.sparkContext.textFile("ftp://anonymous:pwd@<hostname>/data.gz")
rdd.count
...
This actually works when I run the spark application from my Local Machine (Mac), but when I try to run the same application from the docker container (running in Mac), I am getting the following exception,
Exception in thread "main" org.apache.commons.net.ftp.FTPConnectionClosedException: Connection closed without indication.
at org.apache.commons.net.ftp.FTP.__getReply(FTP.java:313)
at org.apache.commons.net.ftp.FTP.__getReply(FTP.java:290)
at org.apache.commons.net.ftp.FTP.sendCommand(FTP.java:479)
at org.apache.commons.net.ftp.FTP.sendCommand(FTP.java:552)
at org.apache.commons.net.ftp.FTP.sendCommand(FTP.java:601)
at org.apache.commons.net.ftp.FTP.quit(FTP.java:809)
at org.apache.commons.net.ftp.FTPClient.logout(FTPClient.java:979)
at org.apache.hadoop.fs.ftp.FTPFileSystem.disconnect(FTPFileSystem.java:168)
at org.apache.hadoop.fs.ftp.FTPFileSystem.getFileStatus(FTPFileSystem.java:415)
at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:57)
at org.apache.hadoop.fs.Globber.glob(Globber.java:252)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1676)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:259)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:205)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.MapOutputTrackerMaster.getPreferredLocationsForShuffle(MapOutputTracker.scala:626)
at org.apache.spark.rdd.ShuffledRDD.getPreferredLocations(ShuffledRDD.scala:99)
at org.apache.spark.rdd.RDD.$anonfun$preferredLocations$2(RDD.scala:300)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.preferredLocations(RDD.scala:300)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2098)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocs(DAGScheduler.scala:2072)
at org.apache.spark.SparkContext.getPreferredLocs(SparkContext.scala:1794)
at org.apache.spark.rdd.DefaultPartitionCoalescer.currPrefLocs(CoalescedRDD.scala:180)
at org.apache.spark.rdd.DefaultPartitionCoalescer$PartitionLocations.$anonfun$getAllPrefLocs$1(CoalescedRDD.scala:198)
at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36)
at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198)
at org.apache.spark.rdd.DefaultPartitionCoalescer$PartitionLocations.getAllPrefLocs(CoalescedRDD.scala:197)
at org.apache.spark.rdd.DefaultPartitionCoalescer$PartitionLocations.<init>(CoalescedRDD.scala:190)
at org.apache.spark.rdd.DefaultPartitionCoalescer.coalesce(CoalescedRDD.scala:391)
at org.apache.spark.rdd.CoalescedRDD.getPartitions(CoalescedRDD.scala:90)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2158)
at org.apache.spark.rdd.RDD.count(RDD.scala:1227)
at com.mypackage.Myapp$.parseData(Myapp.scala:76)
In the container, even the ftp command line utility also have the same issue, but found out by setting the passive mode in ftp CLI, I am able to successfully transfer file from FTP server to the container,
ftp <host>
...
ftp> passive
Passive mode on.
ftp> get data.gz
227 Entering Passive Mode ...
226 Transfer complete
20676672 bytes received in 25.53 secs (790.9552 kB/s)
So my question here is...How do I set the passive mode property?... when reading the file in Spark using param.spark.sparkContext.textFile("ftp://anonymous:pwd@<hostname>/data.gz")
Solution
I do not have experience with Spark, so I do not know how it glues with Hadoop. But in Hadoop, you can set up FTP passive mode by setting fs.ftp.data.connection.mode configuration option:
fs.ftp.data.connection.mode=PASSIVE_LOCAL_DATA_CONNECTION_MODE
You need Hadoop 2.9 at least: https://issues.apache.org/jira/browse/HADOOP-13953
Answered By - Martin Prikryl Answer Checked By - Pedro (PHPFixing Volunteer)
0 Comments:
Post a Comment
Note: Only a member of this blog may post a comment.