PHPFixing
  • Privacy Policy
  • TOS
  • Ask Question
  • Contact Us
  • Home
  • PHP
  • Programming
  • SQL Injection
  • Web3.0

Tuesday, October 18, 2022

[FIXED] How to conda install CUDA enabled PyTorch in a Docker container?

 October 18, 2022     anaconda, docker, python-3.x, pytorch     No comments   

Issue

I am trying to build a Docker container on a server within which a conda environment is built. All the other requirements are satisfied except for CUDA enabled PyTorch (I can get PyTorch working without CUDA however, no problem). How do I make sure PyTorch is using CUDA?

This is the Dockerfile :

# Use nvidia/cuda image
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04

# set bash as current shell
RUN chsh -s /bin/bash

# install anaconda
RUN apt-get update
RUN apt-get install -y wget bzip2 ca-certificates libglib2.0-0 libxext6 libsm6 libxrender1 git mercurial subversion && \
        apt-get clean
RUN wget --quiet https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh -O ~/anaconda.sh && \
        /bin/bash ~/anaconda.sh -b -p /opt/conda && \
        rm ~/anaconda.sh && \
        ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \
        echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc && \
        find /opt/conda/ -follow -type f -name '*.a' -delete && \
        find /opt/conda/ -follow -type f -name '*.js.map' -delete && \
        /opt/conda/bin/conda clean -afy

# set path to conda
ENV PATH /opt/conda/bin:$PATH


# setup conda virtual environment
COPY ./requirements.yaml /tmp/requirements.yaml
RUN conda update conda \
    && conda env create --name camera-seg -f /tmp/requirements.yaml \
    && conda install -y -c conda-forge -n camera-seg flake8

# From the pythonspeed tutorial; Make RUN commands use the new environment
SHELL ["conda", "run", "-n", "camera-seg", "/bin/bash", "-c"]

# PyTorch with CUDA 10.2
RUN conda activate camera-seg && conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

RUN echo "conda activate camera-seg" > ~/.bashrc
ENV PATH /opt/conda/envs/camera-seg/bin:$PATH

This gives me the following error when I try to build this container ( docker build -t camera-seg . ):

.....

Step 10/12 : RUN conda activate camera-seg && conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
 ---> Running in e0dd3e648f7b
ERROR conda.cli.main_run:execute(34): Subprocess for 'conda run ['/bin/bash', '-c', 'conda activate camera-seg && conda install pytorch torchvision cudatoolkit=10.2 -c pytorch']' command failed.  (See above for error)

CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.
To initialize your shell, run

    $ conda init <SHELL_NAME>

Currently supported shells are:
  - bash
  - fish
  - tcsh
  - xonsh
  - zsh
  - powershell

See 'conda init --help' for more information and options.

IMPORTANT: You may need to close and restart your shell after running 'conda init'.



The command 'conda run -n camera-seg /bin/bash -c conda activate camera-seg && conda install pytorch torchvision cudatoolkit=10.2 -c pytorch' returned a non-zero code: 1

This is the requirements.yaml:

name: camera-seg
channels:
  - defaults
  - conda-forge
dependencies:
  - python=3.6
  - numpy
  - pillow
  - yaml
  - pyyaml
  - matplotlib
  - jupyter
  - notebook
  - tensorboardx
  - tensorboard
  - protobuf
  - tqdm

When I put pytorch, torchvision and cudatoolkit=10.2 within the requirements.yaml, then PyTorch is successfully installed but it cannot recognize CUDA ( torch.cuda.is_available() returns False ).

I have tried various solutions, for example, this, this and this and some different combinations of them but all to no avail.

Any help is much appreciated. Thanks.


Solution

I got it working after many, many tries. Posting the answer here in case it helps anyone.

Basically, I installed pytorch and torchvision through pip (from within the conda environment) and rest of the dependencies through conda as usual.

This is how the final Dockerfile looks:

# Use nvidia/cuda image
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04

# set bash as current shell
RUN chsh -s /bin/bash
SHELL ["/bin/bash", "-c"]

# install anaconda
RUN apt-get update
RUN apt-get install -y wget bzip2 ca-certificates libglib2.0-0 libxext6 libsm6 libxrender1 git mercurial subversion && \
        apt-get clean
RUN wget --quiet https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh -O ~/anaconda.sh && \
        /bin/bash ~/anaconda.sh -b -p /opt/conda && \
        rm ~/anaconda.sh && \
        ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \
        echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc && \
        find /opt/conda/ -follow -type f -name '*.a' -delete && \
        find /opt/conda/ -follow -type f -name '*.js.map' -delete && \
        /opt/conda/bin/conda clean -afy

# set path to conda
ENV PATH /opt/conda/bin:$PATH


# setup conda virtual environment
COPY ./requirements.yaml /tmp/requirements.yaml
RUN conda update conda \
    && conda env create --name camera-seg -f /tmp/requirements.yaml

RUN echo "conda activate camera-seg" >> ~/.bashrc
ENV PATH /opt/conda/envs/camera-seg/bin:$PATH
ENV CONDA_DEFAULT_ENV $camera-seg

And this is how the requirements.yaml looks like:

name: camera-seg
channels:
  - defaults
  - conda-forge
dependencies:
  - python=3.6
  - pip
  - numpy
  - pillow
  - yaml
  - pyyaml
  - matplotlib
  - jupyter
  - notebook
  - tensorboardx
  - tensorboard
  - protobuf
  - tqdm
  - pip:
    - torch
    - torchvision

Then I build the container using the command docker build -t camera-seg . and PyTorch is now being able to recognize CUDA.



Answered By - Rahul Bohare
Answer Checked By - Senaida (PHPFixing Volunteer)
  • Share This:  
  •  Facebook
  •  Twitter
  •  Stumble
  •  Digg
Newer Post Older Post Home

0 Comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Total Pageviews

Featured Post

Why Learn PHP Programming

Why Learn PHP Programming A widely-used open source scripting language PHP is one of the most popular programming languages in the world. It...

Subscribe To

Posts
Atom
Posts
Comments
Atom
Comments

Copyright © PHPFixing