Issue
So I'm having the following problem:
I have a dataframe like the one bellow where time_diff_float
is the time difference between each row and the row above in minutes. So, for example, I had value = 4
20 minutes after value = 1
.
value | time_diff_float
1 NaN
4 20
3 13
2 55
5 08
7 15
First I have to check if the time difference between two rows is < 60 (one hour) and create a column using the formula rem = value (from row above) * lambda ** time difference between 2 rows
. My lambda is a constant with the value of 0.97.
And then, if the time difference between each row and 2 rows above is still inferior to 60, I have to re-do the same thing comparing each row with 2 rows above. And then I have to do the same thing comparing 3 rows above and etc.
To do that I wrote the following code:
df.loc[df['time_diff_float'] < 60, 'rem_1'] = df['value'].shift() * (lambda_ ** (df['time_diff_float'] - 1))
df.loc[df['time_diff_float'] + df['time_diff_float'].shift() < 60, 'rem_2'] = df['value'].shift(2) * (lambda_ ** (df['time_diff_float'] + df['time_diff_float'].shift() - 1))
df.loc[df['time_diff_float'] + df['time_diff_float'].shift() + df['time_diff_float'].shift(2) < 60, 'rem_3'] = df['value'].shift(3) * (lambda_ ** (df['time_diff_float'] + df['time_diff_float'].shift() + df['time_diff_float'].shift(2) - 1))
My question is: since I have to re-do this at least 10 times (even more) with the real values I have, is there a way to create the "rem columns" dynamically?
Thanks in advance!
Solution
You can save a mask of your data and then update it in every time of the loop:
n = 3
for i in range(1, n):
if (i==1):
mask = df['time_diff_float']
df.loc[mask, 'rem_' +str(i)] = df['value'].shift() * (lambda_ ** (mask - 1))
else:
mask += df['time_diff_float'].shift(i-1)
df.loc[mask < 60, 'rem_'+str(i)] = df['value'].shift(i) * (lambda_ ** (mask - 1))
Answered By - Bruno Mello Answer Checked By - Clifford M. (PHPFixing Volunteer)
0 Comments:
Post a Comment
Note: Only a member of this blog may post a comment.